Fetal programming of skeletal muscle development in ruminant animals.

نویسندگان

  • M Du
  • J Tong
  • J Zhao
  • K R Underwood
  • M Zhu
  • S P Ford
  • P W Nathanielsz
چکیده

Enhancing skeletal muscle growth is crucial for animal agriculture because skeletal muscle provides meat for human consumption. An increasing body of evidence shows that the level of maternal nutrition alters fetal skeletal muscle development, with long-term effects on offspring growth and performance. Fetal skeletal muscle development mainly involves myogenesis (i.e., muscle cell development), but also involves adipogenesis (i.e., adipocyte development) and fibrogenesis (i.e., fibroblast development). These tissues in fetal muscle are mainly derived from mesenchymal stem cells (MSC). Shifting the commitment of MSC from myogenesis to adipogenesis increases intramuscular fat (i.e., marbling), improving the quality grade of meats. Strong experimental evidence indicates that Wingless and Int (Wnt)/beta-catenin signaling regulates MSC differentiation. Upregulation of Wnt/beta-catenin promotes myogenesis, and downregulation enhances adipogenesis. A lack of nutrients in early to midgestation reduces the formation of secondary muscle fibers in ruminant animals. Nutrient deficiency during mid- to late gestation decreases the number of intramuscular adipocytes and muscle fiber sizes. Knowledge of this regulatory mechanism will allow the development of strategies to enhance muscle growth and marbling in offspring, especially in the setting of nutrient deficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Branched-chain amino acid aminotransferase activity decreases during development in skeletal muscles of sheep.

The catabolism of branched-chain amino acid (BCAA) differs between sheep and monogastric animals. The transamination of BCAA seems to be affected by development of the sheep. We studied the developmental changes in the activity and expression of the BCAA aminotransferase (BCAT) isoenzymes in skeletal muscle of sheep. Five muscles were taken from fetus, newborn, preruminant and ruminant lambs. B...

متن کامل

Developmental Programming of Fetal Skeletal Muscle and Adipose Tissue Development

All important developmental milestones are accomplished during the fetal stage, and nutrient fluctuation during this stage produces lasting effects on offspring health, so called fetal programming or developmental programming. The fetal stage is critical for skeletal muscle development, as well as adipose and connective tissue development. Maternal under-nutrition at this stage affects the prol...

متن کامل

Injury to skeletal muscle of mice following acute and sub-acute pregabalin exposure

Objective(s): Pregabalin (PGB) is a new antiepileptic drug that has received FDA approval for patient who suffers from central neuropathic pain, partial seizures, generalized anxiety disorder, fibromyalgia and sleep disorders. This study was undertaken to evaluate the possible adverse effects of PGB on the muscular system of mice. Materials and Methods: To evaluate the effect of PGB on skeletal...

متن کامل

Fetal Rhabdomyoma of the upper Extremity in a 31- Year Old Patient: a Case Report

Fetal rhabdomyomas (RM) are extremely rare benign mesenchymal tumours that occur primarily in the head and neck.This tumour exhibits immature skeletal muscle differentiation. The patients’ median age is four years and surgical resectionis the recommended treatment.Fetal RM of limbs are rare and not well described in the literature and if, predominantly in form of case reports. We reportthe seco...

متن کامل

Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of animal science

دوره 88 13 Suppl  شماره 

صفحات  -

تاریخ انتشار 2010